

Reliability Analysis of an Aeroplane Wing

Supervised by: Dr. Arif Malik Project Team Abishek Chandrasekhar Aravind Vasudevan

Objective

To explore a uncertainties quantification topic at greater depth for steady and unsteady problems in any field of engineering, using approaches, such as Monte Carlo Simulations and Hasofer-Lind-Rackwitz-Fiessler method for a correlated random variables.

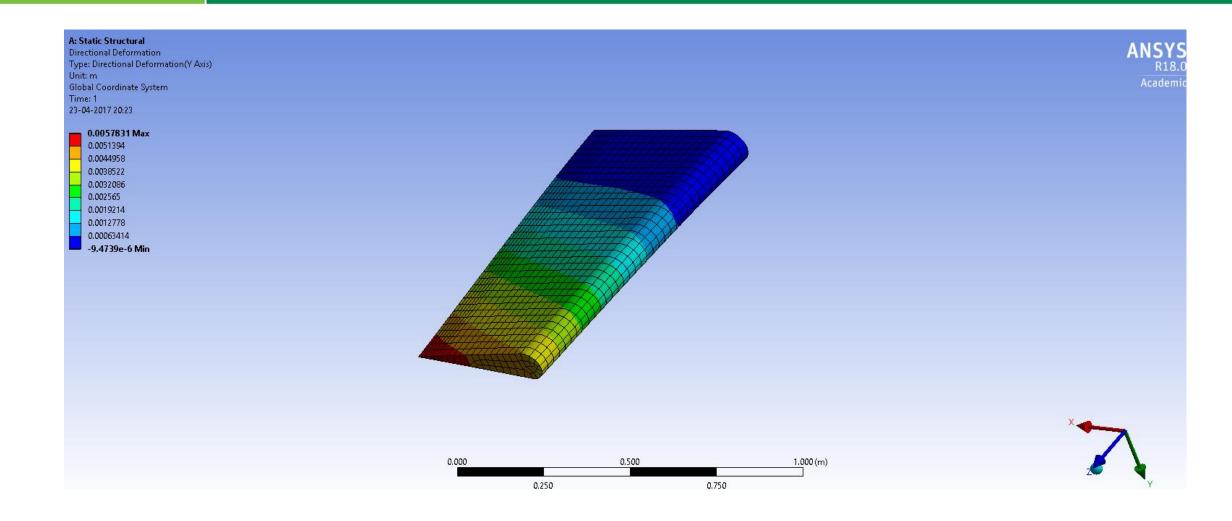
- Define an engineering problem for reliability analysis
- Defining the random variables and their distributions
- CAD design of Aeroplane wing
- FE analysis using ANSYS Workbench
- Formulate a non-linear performance function using function approximation
- Computing Reliability using MCS and HL-RF

Random Variables

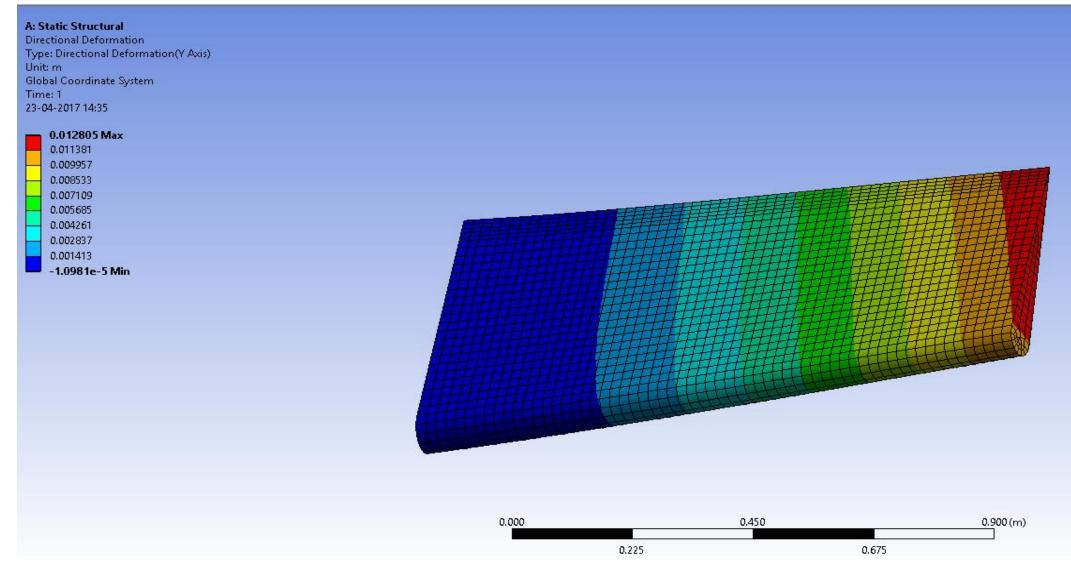
Variable	Mean	Distribution	COV
Length of wing (x1)	1200 mm	Normal	.1
Thickness of wing (x2)	103mm	Log normal	.1
Load (x3)	54000N	Uniform	.1

- The Aeroplane wing model was built using SolidWorks.
- The model was then imported to ANSYS Workbench.
- The FE meshing on the wing was then created and simulated.
- The loads and boundary conditions were prescribed and solved for deformation and stress.
- The Von-Misses stresses and Deflection were recorded from the simulation.

TDALLAS Finite Element Modeling - Results



UTDALLAS Finite Element Modeling - Results



UT DALLAS Two-point Adaptive Nonlinear Approximation

- TANA is a first order Taylor series expansion at point X₂
- The general expression for TANA:

$$-g_t(X) = g(X_2) + \frac{1}{r} \sum_{i=1}^n (x_i^{1-r} * (x_i^r - x_{i,2}^r) * (\frac{\partial g}{\partial x})_{X_2})$$

Two points X₁ and X₂ are chosen, X₁-Previous point, X₂-Current point;

•
$$g_t(X) = g(X_2) + \frac{1}{r} \left(L_2^{1-r} * (L^r - L_2^r) * \frac{\partial g}{\partial L_{X2}} \right) + (P_2^{1-r} * (P^r - P_2^r) * \frac{\partial g}{\partial P_{X2}}) + (t_2^{1-r} * (t^r - t_2^r) * \frac{\partial g}{\partial t_{X2}}) \right)$$

- There are 3 unknowns in this particular problem (n=3).
- Where P = load, t = thickness, L = length;

- The previous and current points chosen as:
- X₁ = [1000, 45000, 90];
- X₂ = [1200, 54000, 103];
- Using these two points for length, thickness and load the gradient is calculated using numerical methods (Numerical Difference methods)

Gradient Calculations

• The gradients are evaluated at the point X₂.

$$\frac{\partial g}{\partial X} = \frac{g(X + \Delta X) - g(X)}{\Delta X}$$

Gradient Calculations	Numerical Value
g(X ₁)	225.537
g(X ₂)	200.196
$\frac{\partial g}{\partial L}$	-0.2422
$\frac{\partial g}{\partial P}$	-1.11e-04
$\frac{\partial g}{\partial t}$	-2.1775

Final Function Approximation

 Implementing the above algorithm in MATLAB, and using the gradient calculations, the final function approximation that will be used to test reliability is:

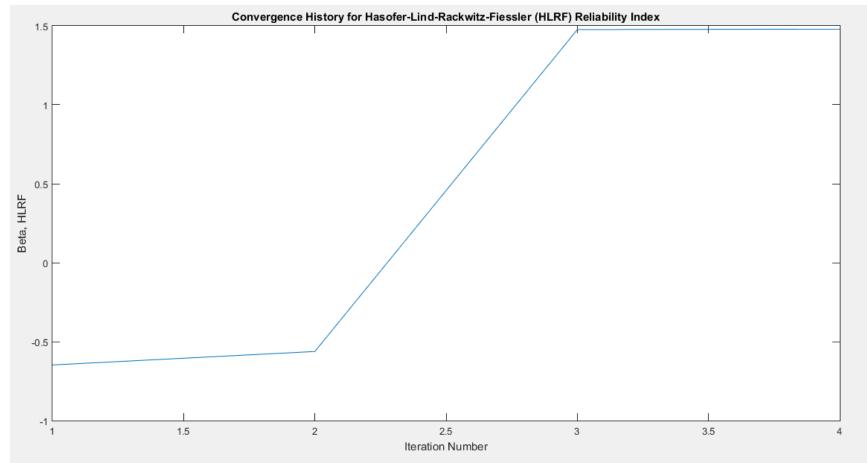
$$G = 226.8 - 3.083 * 10^{-6} - 60 * L^{19.71} - 1.669 * 10^{-6} * P^{19.71} - 2.443 * 10^{-6} * t^{19.71}$$

LLAS

- Using the function obtained from TANA, the reliability of the wing is tested for a set of correlated non-normal random variables using Hasofer-Lind-Rackwitz-Fiessler method.
- In the RF algorithm of HL-RF method, the non-normal random variables are converted to their equivalent normal variables.
- The variables taken were correlated, and the reliability testing was done in MATLAB and the package was built to handle correlated /uncorrelated, normal/non-normal distributions.

Results from HL-RF

• The value of β converges after **4** iterations and the convergence plot is shown below:



Results from HL-RF

Parameter	Matlab Package
BetaFOSM	3.09
Reliablity	0.999
Failure Probability	0.001
Beta_HLRF	1.4796 (after 4 iterations)
Reliablity	0.9305
Failure Probability	0.0695

Varying statistics in HL-RF

Decreasing mean value by 20%

Parameter	Matlab Package
BetaFOSM	2.028
Reliablity	0.9787
Failure Probability	0.0213
Beta_HL	4.405
Reliablity	0.9999
Failure Probability	0.0001

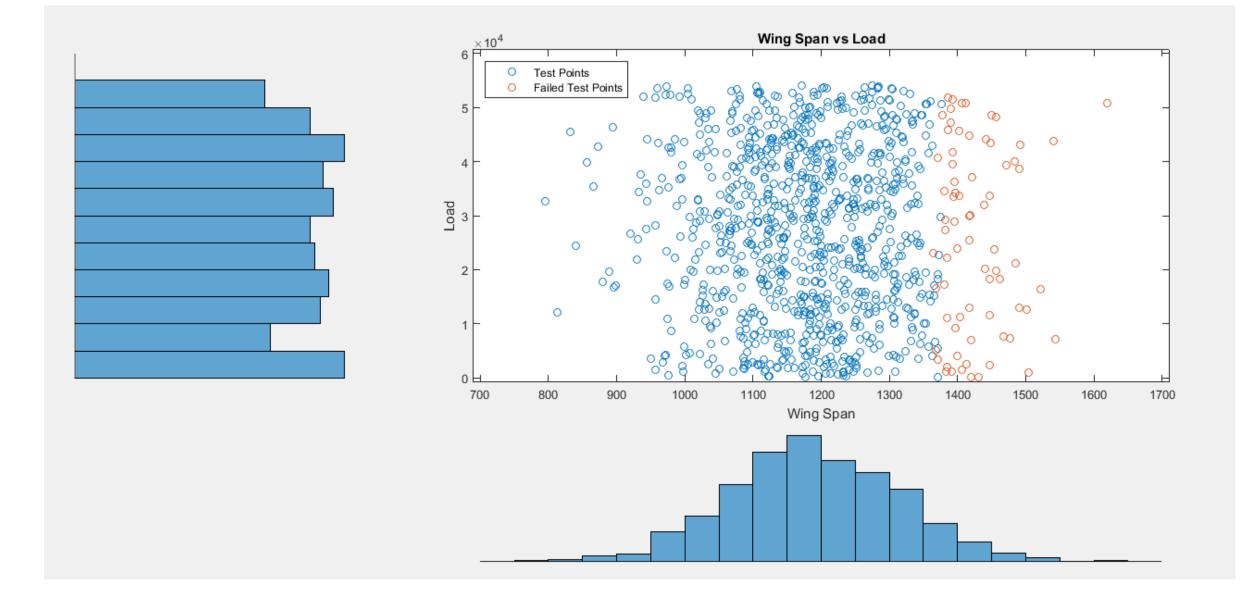
Increasing mean value by 20%

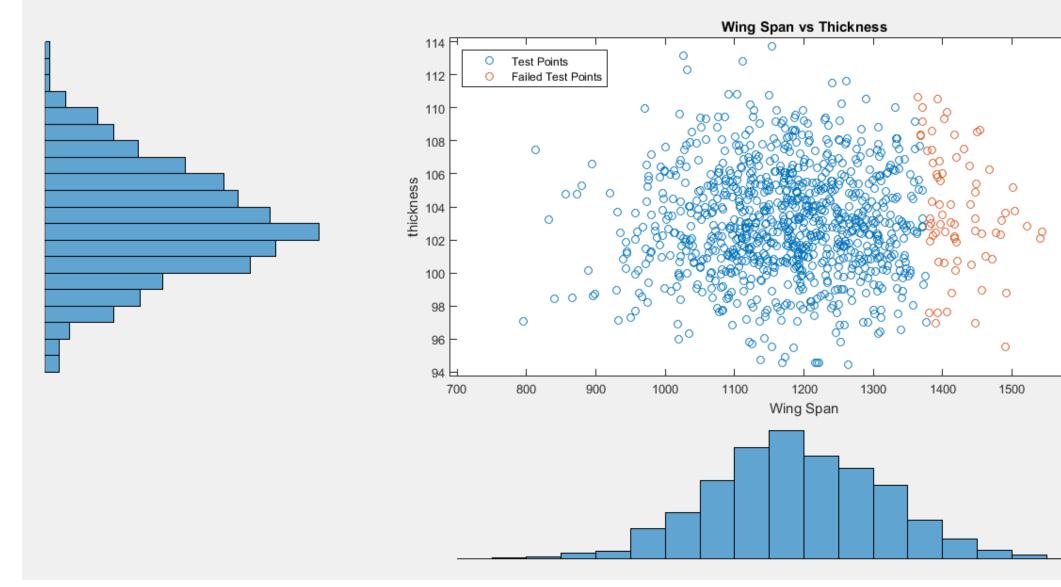
Parameter	Matlab Package
BetaFOSM	-0.6806
Reliablity	0.2482
Failure Probability	0.7518
Beta_HL	1.228
Reliablity	0.8902
Failure Probability	0.1098

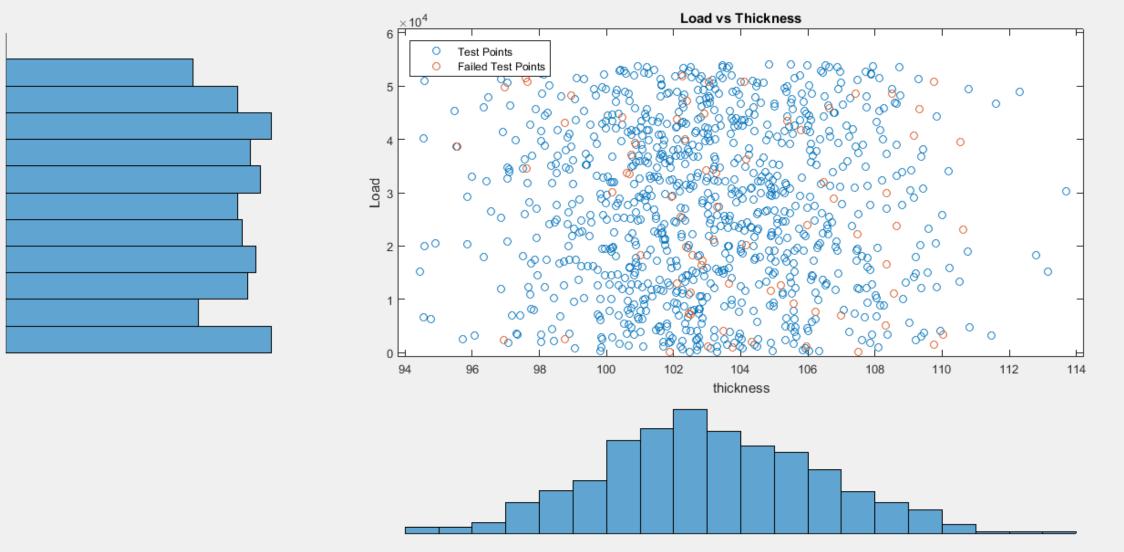
UTIDALLAS Reliability using Monte Carlo Simulation

- Monte Carlo simulations are done assuming for both correlated and non-correlated random variables
- Monte Carlo simulation is run for a 1000 samples
- The decorrelation for correlated variables are done using method of linear transformation and cholesky decomposition.

Parameter	Matlab Package
Reliablity	0.93
Failure Probability	0.069







Comparison of two methods

• The reliability computed using both methods is MCS